hincky的主页 hincky的主页
  • 学习笔记

    • Vue笔记
    • Vuepress
    • nginx
  • 语言类

    • java
    • go
    • python
    • 设计模式
  • 框架类

    • Spring
    • Spring Security
    • Mybatis
  • 容器技术

    • docker
    • k8s
    • helm
    • prometheus
    • grafana
    • jenkins
  • 命令集合

    • linux命令
    • docker命令
    • git命令
    • vim命令
    • k8s命令
  • 数据库

    • sql
    • mysql
  • 协议

    • 网络模型
    • http/1.1
    • WebSocket
    • http/2
    • TLS/SSL
    • tcp
    • IP
    • tcpdump抓包命令
    • wireshark抓包工具
  • 通用

    • Git
  • 技术分享

    • git push/pull总是超时怎么办
    • idea debug技巧
    • postman使用
    • 问题总结
    • idea使用技巧
  • Oauth2

    • Oauth2原理
  • 项目列表

    • redis项目
    • 微服务项目
  • 分类
  • 标签
  • 归档
  • 随笔
GitHub (opens new window)

Hincky

当有趣的人,做想做的事
  • 学习笔记

    • Vue笔记
    • Vuepress
    • nginx
  • 语言类

    • java
    • go
    • python
    • 设计模式
  • 框架类

    • Spring
    • Spring Security
    • Mybatis
  • 容器技术

    • docker
    • k8s
    • helm
    • prometheus
    • grafana
    • jenkins
  • 命令集合

    • linux命令
    • docker命令
    • git命令
    • vim命令
    • k8s命令
  • 数据库

    • sql
    • mysql
  • 协议

    • 网络模型
    • http/1.1
    • WebSocket
    • http/2
    • TLS/SSL
    • tcp
    • IP
    • tcpdump抓包命令
    • wireshark抓包工具
  • 通用

    • Git
  • 技术分享

    • git push/pull总是超时怎么办
    • idea debug技巧
    • postman使用
    • 问题总结
    • idea使用技巧
  • Oauth2

    • Oauth2原理
  • 项目列表

    • redis项目
    • 微服务项目
  • 分类
  • 标签
  • 归档
  • 随笔
GitHub (opens new window)
  • redis-点评项目

    • 基础篇

    • 实战篇

      • 导读
        • 开篇导读
      • 短信登录
        • 导入项目
          • 导入SQL
          • 有关当前模型
          • 导入后端项目
          • 导入前端工程
          • 运行前端项目
        • 基于Session实现登录流程
        • 实现发送短信验证码功能
        • 实现登录拦截功能
        • 隐藏用户敏感信息
        • session共享问题
        • Redis代替session的业务流程
          • 设计key的结构
          • 设计key的具体细节
          • 整体访问流程
        • 基于Redis实现短信登录
        • 解决状态登录刷新问题
          • 初始方案思路总结:
          • 优化方案
          • 代码
      • 商户查询缓存
        • 什么是缓存?
          • 为什么要使用缓存
          • 如何使用缓存
        • 添加商户缓存
          • 缓存模型和思路
          • 代码如下
        • 缓存更新策略
          • 数据库缓存不一致解决方案:
          • 数据库和缓存不一致采用什么方案
        • 实现商铺和缓存与数据库双写一致
        • 缓存穿透问题的解决思路
        • 编码解决商品查询的缓存穿透问题:
        • 缓存雪崩问题及解决思路
        • 缓存击穿问题及解决思路
        • 利用互斥锁解决缓存击穿问题
      • 利用逻辑过期解决缓存击穿问题
        • 利用逻辑过期解决缓存击穿问题
        • 封装Redis工具类
      • 优惠劵秒杀
        • 全局唯一ID
        • Redis实现全局唯一Id
        • 添加优惠卷
        • 实现秒杀下单
        • 库存超卖问题分析
        • 乐观锁解决超卖问题
        • 优惠券秒杀-一人一单
        • 集群环境下的并发问题
      • 分布式锁-redis
        • 基本原理和实现方式对比
        • Redis分布式锁的实现核心思路
        • 实现分布式锁版本一
        • Redis分布式锁误删情况说明
        • 解决Redis分布式锁误删问题
        • 分布式锁的原子性问题
        • Lua脚本解决多条命令原子性问题
        • 利用Java代码调用Lua脚本改造分布式锁
      • 分布式锁-redission
        • 分布式锁-Redission快速入门
        • 分布式锁-redission可重入锁原理
        • 分布式锁-redission锁重试和WatchDog机制
        • 分布式锁-redission锁的MutiLock原理
      • 秒杀优化
        • 秒杀优化-异步秒杀思路
        • 秒杀优化-Redis完成秒杀资格判断
        • 秒杀优化-基于阻塞队列实现秒杀优化
      • 消息队列
        • 认识消息队列
        • 基于List实现消息队列
        • 基于PubSub的消息队列
        • 基于Stream的消息队列
        • 基于Stream的消息队列-消费者组
        • Stream-异步秒杀下单
      • 网红探店
        • 发布探店笔记
        • 查看探店笔记
        • 点赞功能
        • 点赞排行榜
      • 好友关注
        • 关注和取消关注
        • 共同关注
        • Feed流实现方案
        • 推送到粉丝收件箱
        • 实现分页查询收邮箱
      • 附近商户
        • GEO数据结构的基本用法
        • 导入店铺数据到GEO
        • 实现附近商户功能
      • 用户签到
        • BitMap功能演示
        • 实现签到功能
        • 签到统计
        • bitmap来解决缓存穿透
      • UV统计
        • UV统计-HyperLogLog
        • 测试百万数据的统计
    • 高级篇

  • springcloud微服务项目

  • 项目实战
  • redis-点评项目
  • 实战篇
hincky
2022-11-08
目录

消息队列

# 认识消息队列

什么是消息队列:字面意思就是存放消息的队列。最简单的消息队列模型包括3个角色:

  • 消息队列:存储和管理消息,也被称为消息代理(Message Broker)
  • 生产者:发送消息到消息队列
  • 消费者:从消息队列获取消息并处理消息

1653574849336

使用队列的好处在于 **解耦:**所谓解耦,举一个生活中的例子就是:快递员(生产者)把快递放到快递柜里边(Message Queue)去,我们(消费者)从快递柜里边去拿东西,这就是一个异步,如果耦合,那么这个快递员相当于直接把快递交给你,这事固然好,但是万一你不在家,那么快递员就会一直等你,这就浪费了快递员的时间,所以这种思想在我们日常开发中,是非常有必要的。

这种场景在我们秒杀中就变成了:我们下单之后,利用redis去进行校验下单条件,再通过队列把消息发送出去,然后再启动一个线程去消费这个消息,完成解耦,同时也加快我们的响应速度。

这里我们可以使用一些现成的mq,比如kafka,rabbitmq等等,但是呢,如果没有安装mq,我们也可以直接使用redis提供的mq方案,降低我们的部署和学习成本。

# 基于List实现消息队列

基于List结构模拟消息队列

消息队列(Message Queue),字面意思就是存放消息的队列。而Redis的list数据结构是一个双向链表,很容易模拟出队列效果。

队列是入口和出口不在一边,因此我们可以利用:LPUSH 结合 RPOP、或者 RPUSH 结合 LPOP来实现。 不过要注意的是,当队列中没有消息时RPOP或LPOP操作会返回null,并不像JVM的阻塞队列那样会阻塞并等待消息。因此这里应该使用BRPOP或者BLPOP来实现阻塞效果。

1653575176451

基于List的消息队列有哪些优缺点? 优点:

  • 利用Redis存储,不受限于JVM内存上限
  • 基于Redis的持久化机制,数据安全性有保证
  • 可以满足消息有序性

缺点:

  • 无法避免消息丢失
  • 只支持单消费者

# 基于PubSub的消息队列

PubSub(发布订阅)是Redis2.0版本引入的消息传递模型。顾名思义,消费者可以订阅一个或多个channel,生产者向对应channel发送消息后,所有订阅者都能收到相关消息。

SUBSCRIBE channel [channel] :订阅一个或多个频道 PUBLISH channel msg :向一个频道发送消息 PSUBSCRIBE pattern[pattern] :订阅与pattern格式匹配的所有频道

1653575506373

基于PubSub的消息队列有哪些优缺点? 优点:

  • 采用发布订阅模型,支持多生产、多消费

缺点:

  • 不支持数据持久化
  • 无法避免消息丢失
  • 消息堆积有上限,超出时数据丢失

# 基于Stream的消息队列

Stream 是 Redis 5.0 引入的一种新数据类型,可以实现一个功能非常完善的消息队列。

发送消息的命令:

1653577301737

例如:

1653577349691

读取消息的方式之一:XREAD

1653577445413

例如,使用XREAD读取第一个消息:

1653577643629

XREAD阻塞方式,读取最新的消息:

1653577659166

在业务开发中,我们可以循环的调用XREAD阻塞方式来查询最新消息,从而实现持续监听队列的效果,伪代码如下

1653577689129

注意:当我们指定起始ID为$时,代表读取最新的消息,如果我们处理一条消息的过程中,又有超过1条以上的消息到达队列,则下次获取时也只能获取到最新的一条,会出现漏读消息的问题

STREAM类型消息队列的XREAD命令特点:

  • 消息可回溯
  • 一个消息可以被多个消费者读取
  • 可以阻塞读取
  • 有消息漏读的风险

# 基于Stream的消息队列-消费者组

消费者组(Consumer Group):将多个消费者划分到一个组中,监听同一个队列。具备下列特点:

1653577801668

创建消费者组: 1653577984924 key:队列名称 groupName:消费者组名称 ID:起始ID标示,$代表队列中最后一个消息,0则代表队列中第一个消息 MKSTREAM:队列不存在时自动创建队列 其它常见命令:

删除指定的消费者组

XGROUP DESTORY key groupName
1

给指定的消费者组添加消费者

XGROUP CREATECONSUMER key groupname consumername
1

删除消费者组中的指定消费者

XGROUP DELCONSUMER key groupname consumername
1

从消费者组读取消息:

XREADGROUP GROUP group consumer [COUNT count] [BLOCK milliseconds] [NOACK] STREAMS key [key ...] ID [ID ...]
1
  • group:消费组名称
  • consumer:消费者名称,如果消费者不存在,会自动创建一个消费者
  • count:本次查询的最大数量
  • BLOCK milliseconds:当没有消息时最长等待时间
  • NOACK:无需手动ACK,获取到消息后自动确认
  • STREAMS key:指定队列名称
  • ID:获取消息的起始ID:

">":从下一个未消费的消息开始 其它:根据指定id从pending-list中获取已消费但未确认的消息,例如0,是从pending-list中的第一个消息开始

消费者监听消息的基本思路:

1653578211854STREAM类型消息队列的XREADGROUP命令特点:

  • 消息可回溯
  • 可以多消费者争抢消息,加快消费速度
  • 可以阻塞读取
  • 没有消息漏读的风险
  • 有消息确认机制,保证消息至少被消费一次

最后我们来个小对比

1653578560691

# Stream-异步秒杀下单

基于Redis的Stream结构作为消息队列,实现异步秒杀下单

需求:

  • 创建一个Stream类型的消息队列,名为stream.orders
  • 修改之前的秒杀下单Lua脚本,在认定有抢购资格后,直接向stream.orders中添加消息,内容包含voucherId、userId、orderId
  • 项目启动时,开启一个线程任务,尝试获取stream.orders中的消息,完成下单\

修改lua表达式,新增3.6

1656082824939

VoucherOrderServiceImpl

private class VoucherOrderHandler implements Runnable {

    @Override
    public void run() {
        while (true) {
            try {
                // 1.获取消息队列中的订单信息 XREADGROUP GROUP g1 c1 COUNT 1 BLOCK 2000 STREAMS s1 >
                List<MapRecord<String, Object, Object>> list = stringRedisTemplate.opsForStream().read(
                    Consumer.from("g1", "c1"),
                    StreamReadOptions.empty().count(1).block(Duration.ofSeconds(2)),
                    StreamOffset.create("stream.orders", ReadOffset.lastConsumed())
                );
                // 2.判断订单信息是否为空
                if (list == null || list.isEmpty()) {
                    // 如果为null,说明没有消息,继续下一次循环
                    continue;
                }
                // 解析数据
                MapRecord<String, Object, Object> record = list.get(0);
                Map<Object, Object> value = record.getValue();
                VoucherOrder voucherOrder = BeanUtil.fillBeanWithMap(value, new VoucherOrder(), true);
                // 3.创建订单
                createVoucherOrder(voucherOrder);
                // 4.确认消息 XACK
                stringRedisTemplate.opsForStream().acknowledge("s1", "g1", record.getId());
            } catch (Exception e) {
                log.error("处理订单异常", e);
                //处理异常消息
                handlePendingList();
            }
        }
    }

    private void handlePendingList() {
        while (true) {
            try {
                // 1.获取pending-list中的订单信息 XREADGROUP GROUP g1 c1 COUNT 1 BLOCK 2000 STREAMS s1 0
                List<MapRecord<String, Object, Object>> list = stringRedisTemplate.opsForStream().read(
                    Consumer.from("g1", "c1"),
                    StreamReadOptions.empty().count(1),
                    StreamOffset.create("stream.orders", ReadOffset.from("0"))
                );
                // 2.判断订单信息是否为空
                if (list == null || list.isEmpty()) {
                    // 如果为null,说明没有异常消息,结束循环
                    break;
                }
                // 解析数据
                MapRecord<String, Object, Object> record = list.get(0);
                Map<Object, Object> value = record.getValue();
                VoucherOrder voucherOrder = BeanUtil.fillBeanWithMap(value, new VoucherOrder(), true);
                // 3.创建订单
                createVoucherOrder(voucherOrder);
                // 4.确认消息 XACK
                stringRedisTemplate.opsForStream().acknowledge("s1", "g1", record.getId());
            } catch (Exception e) {
                log.error("处理pendding订单异常", e);
                try{
                    Thread.sleep(20);
                }catch(Exception e){
                    e.printStackTrace();
                }
            }
        }
    }
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
编辑 (opens new window)
#redis
秒杀优化
网红探店

← 秒杀优化 网红探店→

最近更新
01
人生前期重要的能力
05-17
02
防火墙命令
04-11
03
docker-compose部署mysql主从集群
03-22
更多文章>
Theme by Vdoing | Copyright © 2022-2023 Hincky | MIT License | 粤ICP备2022120427号
  • 跟随系统
  • 浅色模式
  • 深色模式
  • 阅读模式