hincky的主页 hincky的主页
  • 学习笔记

    • Vue笔记
    • Vuepress
    • nginx
  • 语言类

    • java
    • go
    • python
    • 设计模式
  • 框架类

    • Spring
    • Spring Security
    • Mybatis
  • 容器技术

    • docker
    • k8s
    • helm
    • prometheus
    • grafana
    • jenkins
  • 命令集合

    • linux命令
    • docker命令
    • git命令
    • vim命令
    • k8s命令
  • 数据库

    • sql
    • mysql
  • 协议

    • 网络模型
    • http/1.1
    • WebSocket
    • http/2
    • TLS/SSL
    • tcp
    • IP
    • tcpdump抓包命令
    • wireshark抓包工具
  • 通用

    • Git
  • 技术分享

    • git push/pull总是超时怎么办
    • idea debug技巧
    • postman使用
    • 问题总结
    • idea使用技巧
  • Oauth2

    • Oauth2原理
  • 项目列表

    • redis项目
    • 微服务项目
  • 分类
  • 标签
  • 归档
  • 随笔
GitHub (opens new window)

Hincky

当有趣的人,做想做的事
  • 学习笔记

    • Vue笔记
    • Vuepress
    • nginx
  • 语言类

    • java
    • go
    • python
    • 设计模式
  • 框架类

    • Spring
    • Spring Security
    • Mybatis
  • 容器技术

    • docker
    • k8s
    • helm
    • prometheus
    • grafana
    • jenkins
  • 命令集合

    • linux命令
    • docker命令
    • git命令
    • vim命令
    • k8s命令
  • 数据库

    • sql
    • mysql
  • 协议

    • 网络模型
    • http/1.1
    • WebSocket
    • http/2
    • TLS/SSL
    • tcp
    • IP
    • tcpdump抓包命令
    • wireshark抓包工具
  • 通用

    • Git
  • 技术分享

    • git push/pull总是超时怎么办
    • idea debug技巧
    • postman使用
    • 问题总结
    • idea使用技巧
  • Oauth2

    • Oauth2原理
  • 项目列表

    • redis项目
    • 微服务项目
  • 分类
  • 标签
  • 归档
  • 随笔
GitHub (opens new window)
  • redis-点评项目

    • 基础篇

    • 实战篇

      • 导读
        • 开篇导读
      • 短信登录
        • 导入项目
          • 导入SQL
          • 有关当前模型
          • 导入后端项目
          • 导入前端工程
          • 运行前端项目
        • 基于Session实现登录流程
        • 实现发送短信验证码功能
        • 实现登录拦截功能
        • 隐藏用户敏感信息
        • session共享问题
        • Redis代替session的业务流程
          • 设计key的结构
          • 设计key的具体细节
          • 整体访问流程
        • 基于Redis实现短信登录
        • 解决状态登录刷新问题
          • 初始方案思路总结:
          • 优化方案
          • 代码
      • 商户查询缓存
        • 什么是缓存?
          • 为什么要使用缓存
          • 如何使用缓存
        • 添加商户缓存
          • 缓存模型和思路
          • 代码如下
        • 缓存更新策略
          • 数据库缓存不一致解决方案:
          • 数据库和缓存不一致采用什么方案
        • 实现商铺和缓存与数据库双写一致
        • 缓存穿透问题的解决思路
        • 编码解决商品查询的缓存穿透问题:
        • 缓存雪崩问题及解决思路
        • 缓存击穿问题及解决思路
        • 利用互斥锁解决缓存击穿问题
      • 利用逻辑过期解决缓存击穿问题
        • 利用逻辑过期解决缓存击穿问题
        • 封装Redis工具类
      • 优惠劵秒杀
        • 全局唯一ID
        • Redis实现全局唯一Id
        • 添加优惠卷
        • 实现秒杀下单
        • 库存超卖问题分析
        • 乐观锁解决超卖问题
        • 优惠券秒杀-一人一单
        • 集群环境下的并发问题
      • 分布式锁-redis
        • 基本原理和实现方式对比
        • Redis分布式锁的实现核心思路
        • 实现分布式锁版本一
        • Redis分布式锁误删情况说明
        • 解决Redis分布式锁误删问题
        • 分布式锁的原子性问题
        • Lua脚本解决多条命令原子性问题
        • 利用Java代码调用Lua脚本改造分布式锁
      • 分布式锁-redission
        • 分布式锁-Redission快速入门
        • 分布式锁-redission可重入锁原理
        • 分布式锁-redission锁重试和WatchDog机制
        • 分布式锁-redission锁的MutiLock原理
      • 秒杀优化
        • 秒杀优化-异步秒杀思路
        • 秒杀优化-Redis完成秒杀资格判断
        • 秒杀优化-基于阻塞队列实现秒杀优化
      • 消息队列
        • 认识消息队列
        • 基于List实现消息队列
        • 基于PubSub的消息队列
        • 基于Stream的消息队列
        • 基于Stream的消息队列-消费者组
        • Stream-异步秒杀下单
      • 网红探店
        • 发布探店笔记
        • 查看探店笔记
        • 点赞功能
        • 点赞排行榜
      • 好友关注
        • 关注和取消关注
        • 共同关注
        • Feed流实现方案
        • 推送到粉丝收件箱
        • 实现分页查询收邮箱
      • 附近商户
        • GEO数据结构的基本用法
        • 导入店铺数据到GEO
        • 实现附近商户功能
      • 用户签到
        • BitMap功能演示
        • 实现签到功能
        • 签到统计
        • bitmap来解决缓存穿透
      • UV统计
        • UV统计-HyperLogLog
        • 测试百万数据的统计
    • 高级篇

  • springcloud微服务项目

  • 项目实战
  • redis-点评项目
  • 实战篇
hincky
2022-11-08
目录

分布式锁-redission

# 分布式锁-redission功能介绍

基于setnx实现的分布式锁存在下面的问题:

重入问题:重入问题是指 获得锁的线程可以再次进入到相同的锁的代码块中,可重入锁的意义在于防止死锁,比如HashTable这样的代码中,他的方法都是使用synchronized修饰的,假如他在一个方法内,调用另一个方法,那么此时如果是不可重入的,不就死锁了吗?所以可重入锁他的主要意义是防止死锁,我们的synchronized和Lock锁都是可重入的。

不可重试:是指目前的分布式只能尝试一次,我们认为合理的情况是:当线程在获得锁失败后,他应该能再次尝试获得锁。

**超时释放:**我们在加锁时增加了过期时间,这样的我们可以防止死锁,但是如果卡顿的时间超长,虽然我们采用了lua表达式防止删锁的时候,误删别人的锁,但是毕竟没有锁住,有安全隐患

主从一致性: 如果Redis提供了主从集群,当我们向集群写数据时,主机需要异步的将数据同步给从机,而万一在同步过去之前,主机宕机了,就会出现死锁问题。

1653546070602

那么什么是Redission呢

Redisson是一个在Redis的基础上实现的Java驻内存数据网格(In-Memory Data Grid)。它不仅提供了一系列的分布式的Java常用对象,还提供了许多分布式服务,其中就包含了各种分布式锁的实现。

Redission提供了分布式锁的多种多样的功能

1653546736063

# 分布式锁-Redission快速入门

引入依赖:

<dependency>
	<groupId>org.redisson</groupId>
	<artifactId>redisson</artifactId>
	<version>3.13.6</version>
</dependency>
1
2
3
4
5

配置Redisson客户端:

@Configuration
public class RedissonConfig {

    @Bean
    public RedissonClient redissonClient(){
        // 配置
        Config config = new Config();
        config.useSingleServer().setAddress("redis://192.168.150.101:6379")
            .setPassword("123321");
        // 创建RedissonClient对象
        return Redisson.create(config);
    }
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14

如何使用Redission的分布式锁

@Resource
private RedissionClient redissonClient;

@Test
void testRedisson() throws Exception{
    //获取锁(可重入),指定锁的名称
    RLock lock = redissonClient.getLock("anyLock");
    //尝试获取锁,参数分别是:获取锁的最大等待时间(期间会重试),锁自动释放时间,时间单位
    boolean isLock = lock.tryLock(1,10,TimeUnit.SECONDS);
    //判断获取锁成功
    if(isLock){
        try{
            System.out.println("执行业务");          
        }finally{
            //释放锁
            lock.unlock();
        }
        
    }
    
    
    
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

在 VoucherOrderServiceImpl

注入RedissonClient

@Resource
private RedissonClient redissonClient;

@Override
public Result seckillVoucher(Long voucherId) {
        // 1.查询优惠券
        SeckillVoucher voucher = seckillVoucherService.getById(voucherId);
        // 2.判断秒杀是否开始
        if (voucher.getBeginTime().isAfter(LocalDateTime.now())) {
            // 尚未开始
            return Result.fail("秒杀尚未开始!");
        }
        // 3.判断秒杀是否已经结束
        if (voucher.getEndTime().isBefore(LocalDateTime.now())) {
            // 尚未开始
            return Result.fail("秒杀已经结束!");
        }
        // 4.判断库存是否充足
        if (voucher.getStock() < 1) {
            // 库存不足
            return Result.fail("库存不足!");
        }
        Long userId = UserHolder.getUser().getId();
        //创建锁对象 这个代码不用了,因为我们现在要使用分布式锁
        //SimpleRedisLock lock = new SimpleRedisLock("order:" + userId, stringRedisTemplate);
        RLock lock = redissonClient.getLock("lock:order:" + userId);
        //获取锁对象
        boolean isLock = lock.tryLock();
       
		//加锁失败
        if (!isLock) {
            return Result.fail("不允许重复下单");
        }
        try {
            //获取代理对象(事务)
            IVoucherOrderService proxy = (IVoucherOrderService) AopContext.currentProxy();
            return proxy.createVoucherOrder(voucherId);
        } finally {
            //释放锁
            lock.unlock();
        }
 }
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

# 分布式锁-redission可重入锁原理

在Lock锁中,他是借助于底层的一个voaltile的一个state变量来记录重入的状态的,比如当前没有人持有这把锁,那么state=0,假如有人持有这把锁,那么state=1,如果持有这把锁的人再次持有这把锁,那么state就会+1 ,如果是对于synchronized而言,他在c语言代码中会有一个count,原理和state类似,也是重入一次就加一,释放一次就-1 ,直到减少成0 时,表示当前这把锁没有被人持有。

在redission中,我们的也支持支持可重入锁

在分布式锁中,他采用hash结构用来存储锁,其中大key表示表示这把锁是否存在,用小key表示当前这把锁被哪个线程持有,所以接下来我们一起分析一下当前的这个lua表达式

这个地方一共有3个参数

KEYS[1] : 锁名称

ARGV[1]: 锁失效时间

ARGV[2]: id + ":" + threadId; 锁的小key

exists: 判断数据是否存在 name:是lock是否存在,如果==0,就表示当前这把锁不存在

redis.call('hset', KEYS[1], ARGV[2], 1);此时他就开始往redis里边去写数据 ,写成一个hash结构

Lock{

​ id + ":" + threadId : 1

}

如果当前这把锁存在,则第一个条件不满足,再判断

redis.call('hexists', KEYS[1], ARGV[2]) == 1

此时需要通过大key+小key判断当前这把锁是否是属于自己的,如果是自己的,则进行

redis.call('hincrby', KEYS[1], ARGV[2], 1)

将当前这个锁的value进行+1 ,redis.call('pexpire', KEYS[1], ARGV[1]); 然后再对其设置过期时间,如果以上两个条件都不满足,则表示当前这把锁抢锁失败,最后返回pttl,即为当前这把锁的失效时间

如果小伙帮们看了前边的源码, 你会发现他会去判断当前这个方法的返回值是否为null,如果是null,则对应则前两个if对应的条件,退出抢锁逻辑,如果返回的不是null,即走了第三个分支,在源码处会进行while(true)的自旋抢锁。

"if (redis.call('exists', KEYS[1]) == 0) then " +
                  "redis.call('hset', KEYS[1], ARGV[2], 1); " +
                  "redis.call('pexpire', KEYS[1], ARGV[1]); " +
                  "return nil; " +
              "end; " +
              "if (redis.call('hexists', KEYS[1], ARGV[2]) == 1) then " +
                  "redis.call('hincrby', KEYS[1], ARGV[2], 1); " +
                  "redis.call('pexpire', KEYS[1], ARGV[1]); " +
                  "return nil; " +
              "end; " +
              "return redis.call('pttl', KEYS[1]);"
1
2
3
4
5
6
7
8
9
10
11

1653548087334

# 分布式锁-redission锁重试和WatchDog机制

说明:由于课程中已经说明了有关tryLock的源码解析以及其看门狗原理,所以笔者在这里给大家分析lock()方法的源码解析,希望大家在学习过程中,能够掌握更多的知识

抢锁过程中,获得当前线程,通过tryAcquire进行抢锁,该抢锁逻辑和之前逻辑相同

1、先判断当前这把锁是否存在,如果不存在,插入一把锁,返回null

2、判断当前这把锁是否是属于当前线程,如果是,则返回null

所以如果返回是null,则代表着当前这哥们已经抢锁完毕,或者可重入完毕,但是如果以上两个条件都不满足,则进入到第三个条件,返回的是锁的失效时间,同学们可以自行往下翻一点点,你能发现有个while( true) 再次进行tryAcquire进行抢锁

long threadId = Thread.currentThread().getId();
Long ttl = tryAcquire(-1, leaseTime, unit, threadId);
// lock acquired
if (ttl == null) {
    return;
}
1
2
3
4
5
6

接下来会有一个条件分支,因为lock方法有重载方法,一个是带参数,一个是不带参数,如果带带参数传入的值是-1,如果传入参数,则leaseTime是他本身,所以如果传入了参数,此时leaseTime != -1 则会进去抢锁,抢锁的逻辑就是之前说的那三个逻辑

if (leaseTime != -1) {
    return tryLockInnerAsync(waitTime, leaseTime, unit, threadId, RedisCommands.EVAL_LONG);
}
1
2
3

如果是没有传入时间,则此时也会进行抢锁, 而且抢锁时间是默认看门狗时间 commandExecutor.getConnectionManager().getCfg().getLockWatchdogTimeout()

ttlRemainingFuture.onComplete((ttlRemaining, e) 这句话相当于对以上抢锁进行了监听,也就是说当上边抢锁完毕后,此方法会被调用,具体调用的逻辑就是去后台开启一个线程,进行续约逻辑,也就是看门狗线程

RFuture<Long> ttlRemainingFuture = tryLockInnerAsync(waitTime,
                                        commandExecutor.getConnectionManager().getCfg().getLockWatchdogTimeout(),
                                        TimeUnit.MILLISECONDS, threadId, RedisCommands.EVAL_LONG);
ttlRemainingFuture.onComplete((ttlRemaining, e) -> {
    if (e != null) {
        return;
    }

    // lock acquired
    if (ttlRemaining == null) {
        scheduleExpirationRenewal(threadId);
    }
});
return ttlRemainingFuture;
1
2
3
4
5
6
7
8
9
10
11
12
13
14

此逻辑就是续约逻辑,注意看commandExecutor.getConnectionManager().newTimeout() 此方法

Method( new TimerTask() {},参数2 ,参数3 )

指的是:通过参数2,参数3 去描述什么时候去做参数1的事情,现在的情况是:10s之后去做参数一的事情

因为锁的失效时间是30s,当10s之后,此时这个timeTask 就触发了,他就去进行续约,把当前这把锁续约成30s,如果操作成功,那么此时就会递归调用自己,再重新设置一个timeTask(),于是再过10s后又再设置一个timerTask,完成不停的续约

那么大家可以想一想,假设我们的线程出现了宕机他还会续约吗?当然不会,因为没有人再去调用renewExpiration这个方法,所以等到时间之后自然就释放了。

private void renewExpiration() {
    ExpirationEntry ee = EXPIRATION_RENEWAL_MAP.get(getEntryName());
    if (ee == null) {
        return;
    }
    
    Timeout task = commandExecutor.getConnectionManager().newTimeout(new TimerTask() {
        @Override
        public void run(Timeout timeout) throws Exception {
            ExpirationEntry ent = EXPIRATION_RENEWAL_MAP.get(getEntryName());
            if (ent == null) {
                return;
            }
            Long threadId = ent.getFirstThreadId();
            if (threadId == null) {
                return;
            }
            
            RFuture<Boolean> future = renewExpirationAsync(threadId);
            future.onComplete((res, e) -> {
                if (e != null) {
                    log.error("Can't update lock " + getName() + " expiration", e);
                    return;
                }
                
                if (res) {
                    // reschedule itself
                    renewExpiration();
                }
            });
        }
    }, internalLockLeaseTime / 3, TimeUnit.MILLISECONDS);
    
    ee.setTimeout(task);
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

# 分布式锁-redission锁的MutiLock原理

为了提高redis的可用性,我们会搭建集群或者主从,现在以主从为例

此时我们去写命令,写在主机上, 主机会将数据同步给从机,但是假设在主机还没有来得及把数据写入到从机去的时候,此时主机宕机,哨兵会发现主机宕机,并且选举一个slave变成master,而此时新的master中实际上并没有锁信息,此时锁信息就已经丢掉了。

1653553998403

为了解决这个问题,redission提出来了MutiLock锁,使用这把锁咱们就不使用主从了,每个节点的地位都是一样的, 这把锁加锁的逻辑需要写入到每一个主丛节点上,只有所有的服务器都写入成功,此时才是加锁成功,假设现在某个节点挂了,那么他去获得锁的时候,只要有一个节点拿不到,都不能算是加锁成功,就保证了加锁的可靠性。

1653554055048

那么MutiLock 加锁原理是什么呢?笔者画了一幅图来说明

当我们去设置了多个锁时,redission会将多个锁添加到一个集合中,然后用while循环去不停去尝试拿锁,但是会有一个总共的加锁时间,这个时间是用需要加锁的个数 * 1500ms ,假设有3个锁,那么时间就是4500ms,假设在这4500ms内,所有的锁都加锁成功, 那么此时才算是加锁成功,如果在4500ms有线程加锁失败,则会再次去进行重试.

1653553093967

编辑 (opens new window)
#redis
分布式锁-redis
秒杀优化

← 分布式锁-redis 秒杀优化→

最近更新
01
人生前期重要的能力
05-17
02
防火墙命令
04-11
03
docker-compose部署mysql主从集群
03-22
更多文章>
Theme by Vdoing | Copyright © 2022-2023 Hincky | MIT License | 粤ICP备2022120427号
  • 跟随系统
  • 浅色模式
  • 深色模式
  • 阅读模式