hincky的主页 hincky的主页
  • 学习笔记

    • Vue笔记
    • Vuepress
    • nginx
  • 语言类

    • java
    • go
    • python
    • 设计模式
  • 框架类

    • Spring
    • Spring Security
    • Mybatis
  • 容器技术

    • docker
    • k8s
    • helm
    • prometheus
    • grafana
    • jenkins
  • 命令集合

    • linux命令
    • docker命令
    • git命令
    • vim命令
    • k8s命令
  • 数据库

    • sql
    • mysql
  • 协议

    • 网络模型
    • http/1.1
    • WebSocket
    • http/2
    • TLS/SSL
    • tcp
    • IP
    • tcpdump抓包命令
    • wireshark抓包工具
  • 通用

    • Git
  • 技术分享

    • git push/pull总是超时怎么办
    • idea debug技巧
    • postman使用
    • 问题总结
    • idea使用技巧
  • Oauth2

    • Oauth2原理
  • 项目列表

    • redis项目
    • 微服务项目
  • 分类
  • 标签
  • 归档
  • 随笔
GitHub (opens new window)

Hincky

当有趣的人,做想做的事
  • 学习笔记

    • Vue笔记
    • Vuepress
    • nginx
  • 语言类

    • java
    • go
    • python
    • 设计模式
  • 框架类

    • Spring
    • Spring Security
    • Mybatis
  • 容器技术

    • docker
    • k8s
    • helm
    • prometheus
    • grafana
    • jenkins
  • 命令集合

    • linux命令
    • docker命令
    • git命令
    • vim命令
    • k8s命令
  • 数据库

    • sql
    • mysql
  • 协议

    • 网络模型
    • http/1.1
    • WebSocket
    • http/2
    • TLS/SSL
    • tcp
    • IP
    • tcpdump抓包命令
    • wireshark抓包工具
  • 通用

    • Git
  • 技术分享

    • git push/pull总是超时怎么办
    • idea debug技巧
    • postman使用
    • 问题总结
    • idea使用技巧
  • Oauth2

    • Oauth2原理
  • 项目列表

    • redis项目
    • 微服务项目
  • 分类
  • 标签
  • 归档
  • 随笔
GitHub (opens new window)
  • redis-点评项目

    • 基础篇

    • 实战篇

      • 导读
        • 开篇导读
      • 短信登录
        • 导入项目
          • 导入SQL
          • 有关当前模型
          • 导入后端项目
          • 导入前端工程
          • 运行前端项目
        • 基于Session实现登录流程
        • 实现发送短信验证码功能
        • 实现登录拦截功能
        • 隐藏用户敏感信息
        • session共享问题
        • Redis代替session的业务流程
          • 设计key的结构
          • 设计key的具体细节
          • 整体访问流程
        • 基于Redis实现短信登录
        • 解决状态登录刷新问题
          • 初始方案思路总结:
          • 优化方案
          • 代码
      • 商户查询缓存
        • 什么是缓存?
          • 为什么要使用缓存
          • 如何使用缓存
        • 添加商户缓存
          • 缓存模型和思路
          • 代码如下
        • 缓存更新策略
          • 数据库缓存不一致解决方案:
          • 数据库和缓存不一致采用什么方案
        • 实现商铺和缓存与数据库双写一致
        • 缓存穿透问题的解决思路
        • 编码解决商品查询的缓存穿透问题:
        • 缓存雪崩问题及解决思路
        • 缓存击穿问题及解决思路
        • 利用互斥锁解决缓存击穿问题
      • 利用逻辑过期解决缓存击穿问题
        • 利用逻辑过期解决缓存击穿问题
        • 封装Redis工具类
      • 优惠劵秒杀
        • 全局唯一ID
        • Redis实现全局唯一Id
        • 添加优惠卷
        • 实现秒杀下单
        • 库存超卖问题分析
        • 乐观锁解决超卖问题
        • 优惠券秒杀-一人一单
        • 集群环境下的并发问题
      • 分布式锁-redis
        • 基本原理和实现方式对比
        • Redis分布式锁的实现核心思路
        • 实现分布式锁版本一
        • Redis分布式锁误删情况说明
        • 解决Redis分布式锁误删问题
        • 分布式锁的原子性问题
        • Lua脚本解决多条命令原子性问题
        • 利用Java代码调用Lua脚本改造分布式锁
      • 分布式锁-redission
        • 分布式锁-Redission快速入门
        • 分布式锁-redission可重入锁原理
        • 分布式锁-redission锁重试和WatchDog机制
        • 分布式锁-redission锁的MutiLock原理
      • 秒杀优化
        • 秒杀优化-异步秒杀思路
        • 秒杀优化-Redis完成秒杀资格判断
        • 秒杀优化-基于阻塞队列实现秒杀优化
      • 消息队列
        • 认识消息队列
        • 基于List实现消息队列
        • 基于PubSub的消息队列
        • 基于Stream的消息队列
        • 基于Stream的消息队列-消费者组
        • Stream-异步秒杀下单
      • 网红探店
        • 发布探店笔记
        • 查看探店笔记
        • 点赞功能
        • 点赞排行榜
      • 好友关注
        • 关注和取消关注
        • 共同关注
        • Feed流实现方案
        • 推送到粉丝收件箱
        • 实现分页查询收邮箱
      • 附近商户
        • GEO数据结构的基本用法
        • 导入店铺数据到GEO
        • 实现附近商户功能
      • 用户签到
        • BitMap功能演示
        • 实现签到功能
        • 签到统计
        • bitmap来解决缓存穿透
      • UV统计
        • UV统计-HyperLogLog
        • 测试百万数据的统计
    • 高级篇

  • springcloud微服务项目

  • 项目实战
  • redis-点评项目
  • 实战篇
hincky
2022-11-08
目录

附近商户

# GEO数据结构的基本用法

GEO就是Geolocation的简写形式,代表地理坐标。Redis在3.2版本中加入了对GEO的支持,允许存储地理坐标信息,帮助我们根据经纬度来检索数据。常见的命令有:

  • GEOADD:添加一个地理空间信息,包含:经度(longitude)、纬度(latitude)、值(member)
  • GEODIST:计算指定的两个点之间的距离并返回
  • GEOHASH:将指定member的坐标转为hash字符串形式并返回
  • GEOPOS:返回指定member的坐标
  • GEORADIUS:指定圆心、半径,找到该圆内包含的所有member,并按照与圆心之间的距离排序后返回。6.以后已废弃
  • GEOSEARCH:在指定范围内搜索member,并按照与指定点之间的距离排序后返回。范围可以是圆形或矩形。6.2.新功能
  • GEOSEARCHSTORE:与GEOSEARCH功能一致,不过可以把结果存储到一个指定的key。 6.2.新功能

# 导入店铺数据到GEO

具体场景说明:

1653822036941

当我们点击美食之后,会出现一系列的商家,商家中可以按照多种排序方式,我们此时关注的是距离,这个地方就需要使用到我们的GEO,向后台传入当前app收集的地址(我们此处是写死的) ,以当前坐标作为圆心,同时绑定相同的店家类型type,以及分页信息,把这几个条件传入后台,后台查询出对应的数据再返回。

1653822021827

我们要做的事情是:将数据库表中的数据导入到redis中去,redis中的GEO,GEO在redis中就一个menber和一个经纬度,我们把x和y轴传入到redis做的经纬度位置去,但我们不能把所有的数据都放入到menber中去,毕竟作为redis是一个内存级数据库,如果存海量数据,redis还是力不从心,所以我们在这个地方存储他的id即可。

但是这个时候还有一个问题,就是在redis中并没有存储type,所以我们无法根据type来对数据进行筛选,所以我们可以按照商户类型做分组,类型相同的商户作为同一组,以typeId为key存入同一个GEO集合中即可

代码

HmDianPingApplicationTests

@Test
void loadShopData() {
    // 1.查询店铺信息
    List<Shop> list = shopService.list();
    // 2.把店铺分组,按照typeId分组,typeId一致的放到一个集合
    Map<Long, List<Shop>> map = list.stream().collect(Collectors.groupingBy(Shop::getTypeId));
    // 3.分批完成写入Redis
    for (Map.Entry<Long, List<Shop>> entry : map.entrySet()) {
        // 3.1.获取类型id
        Long typeId = entry.getKey();
        String key = SHOP_GEO_KEY + typeId;
        // 3.2.获取同类型的店铺的集合
        List<Shop> value = entry.getValue();
        List<RedisGeoCommands.GeoLocation<String>> locations = new ArrayList<>(value.size());
        // 3.3.写入redis GEOADD key 经度 纬度 member
        for (Shop shop : value) {
            // stringRedisTemplate.opsForGeo().add(key, new Point(shop.getX(), shop.getY()), shop.getId().toString());
            locations.add(new RedisGeoCommands.GeoLocation<>(
                    shop.getId().toString(),
                    new Point(shop.getX(), shop.getY())
            ));
        }
        stringRedisTemplate.opsForGeo().add(key, locations);
    }
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

# 实现附近商户功能

SpringDataRedis的2.3.9版本并不支持Redis 6.2提供的GEOSEARCH命令,因此我们需要提示其版本,修改自己的POM

第一步:导入pom

<dependency>
    <groupId>org.springframework.boot</groupId>
    <artifactId>spring-boot-starter-data-redis</artifactId>
    <exclusions>
        <exclusion>
            <artifactId>spring-data-redis</artifactId>
            <groupId>org.springframework.data</groupId>
        </exclusion>
        <exclusion>
            <artifactId>lettuce-core</artifactId>
            <groupId>io.lettuce</groupId>
        </exclusion>
    </exclusions>
</dependency>
<dependency>
    <groupId>org.springframework.data</groupId>
    <artifactId>spring-data-redis</artifactId>
    <version>2.6.2</version>
</dependency>
<dependency>
    <groupId>io.lettuce</groupId>
    <artifactId>lettuce-core</artifactId>
    <version>6.1.6.RELEASE</version>
</dependency>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

第二步:

ShopController

@GetMapping("/of/type")
public Result queryShopByType(
        @RequestParam("typeId") Integer typeId,
        @RequestParam(value = "current", defaultValue = "1") Integer current,
        @RequestParam(value = "x", required = false) Double x,
        @RequestParam(value = "y", required = false) Double y
) {
   return shopService.queryShopByType(typeId, current, x, y);
}
1
2
3
4
5
6
7
8
9

ShopServiceImpl

@Override
    public Result queryShopByType(Integer typeId, Integer current, Double x, Double y) {
        // 1.判断是否需要根据坐标查询
        if (x == null || y == null) {
            // 不需要坐标查询,按数据库查询
            Page<Shop> page = query()
                    .eq("type_id", typeId)
                    .page(new Page<>(current, SystemConstants.DEFAULT_PAGE_SIZE));
            // 返回数据
            return Result.ok(page.getRecords());
        }

        // 2.计算分页参数
        int from = (current - 1) * SystemConstants.DEFAULT_PAGE_SIZE;
        int end = current * SystemConstants.DEFAULT_PAGE_SIZE;

        // 3.查询redis、按照距离排序、分页。结果:shopId、distance
        String key = SHOP_GEO_KEY + typeId;
        GeoResults<RedisGeoCommands.GeoLocation<String>> results = stringRedisTemplate.opsForGeo() // GEOSEARCH key BYLONLAT x y BYRADIUS 10 WITHDISTANCE
                .search(
                        key,
                        GeoReference.fromCoordinate(x, y),
                        new Distance(5000),
                        RedisGeoCommands.GeoSearchCommandArgs.newGeoSearchArgs().includeDistance().limit(end)
                );
        // 4.解析出id
        if (results == null) {
            return Result.ok(Collections.emptyList());
        }
        List<GeoResult<RedisGeoCommands.GeoLocation<String>>> list = results.getContent();
        if (list.size() <= from) {
            // 没有下一页了,结束
            return Result.ok(Collections.emptyList());
        }
        // 4.1.截取 from ~ end的部分
        List<Long> ids = new ArrayList<>(list.size());
        Map<String, Distance> distanceMap = new HashMap<>(list.size());
        list.stream().skip(from).forEach(result -> {
            // 4.2.获取店铺id
            String shopIdStr = result.getContent().getName();
            ids.add(Long.valueOf(shopIdStr));
            // 4.3.获取距离
            Distance distance = result.getDistance();
            distanceMap.put(shopIdStr, distance);
        });
        // 5.根据id查询Shop
        String idStr = StrUtil.join(",", ids);
        List<Shop> shops = query().in("id", ids).last("ORDER BY FIELD(id," + idStr + ")").list();
        for (Shop shop : shops) {
            shop.setDistance(distanceMap.get(shop.getId().toString()).getValue());
        }
        // 6.返回
        return Result.ok(shops);
    }
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
编辑 (opens new window)
#redis
好友关注
用户签到

← 好友关注 用户签到→

最近更新
01
人生前期重要的能力
05-17
02
防火墙命令
04-11
03
docker-compose部署mysql主从集群
03-22
更多文章>
Theme by Vdoing | Copyright © 2022-2023 Hincky | MIT License | 粤ICP备2022120427号
  • 跟随系统
  • 浅色模式
  • 深色模式
  • 阅读模式