hincky的主页 hincky的主页
  • 学习笔记

    • Vue笔记
    • Vuepress
    • nginx
  • 语言类

    • java
    • go
    • python
    • 设计模式
  • 框架类

    • Spring
    • Spring Security
    • Mybatis
  • 容器技术

    • docker
    • k8s
    • helm
    • prometheus
    • grafana
    • jenkins
  • 命令集合

    • linux命令
    • docker命令
    • git命令
    • vim命令
    • k8s命令
  • 数据库

    • sql
    • mysql
  • 协议

    • 网络模型
    • http/1.1
    • WebSocket
    • http/2
    • TLS/SSL
    • tcp
    • IP
    • tcpdump抓包命令
    • wireshark抓包工具
  • 通用

    • Git
  • 技术分享

    • git push/pull总是超时怎么办
    • idea debug技巧
    • postman使用
    • 问题总结
    • idea使用技巧
  • Oauth2

    • Oauth2原理
  • 项目列表

    • redis项目
    • 微服务项目
  • 分类
  • 标签
  • 归档
  • 随笔
GitHub (opens new window)

Hincky

当有趣的人,做想做的事
  • 学习笔记

    • Vue笔记
    • Vuepress
    • nginx
  • 语言类

    • java
    • go
    • python
    • 设计模式
  • 框架类

    • Spring
    • Spring Security
    • Mybatis
  • 容器技术

    • docker
    • k8s
    • helm
    • prometheus
    • grafana
    • jenkins
  • 命令集合

    • linux命令
    • docker命令
    • git命令
    • vim命令
    • k8s命令
  • 数据库

    • sql
    • mysql
  • 协议

    • 网络模型
    • http/1.1
    • WebSocket
    • http/2
    • TLS/SSL
    • tcp
    • IP
    • tcpdump抓包命令
    • wireshark抓包工具
  • 通用

    • Git
  • 技术分享

    • git push/pull总是超时怎么办
    • idea debug技巧
    • postman使用
    • 问题总结
    • idea使用技巧
  • Oauth2

    • Oauth2原理
  • 项目列表

    • redis项目
    • 微服务项目
  • 分类
  • 标签
  • 归档
  • 随笔
GitHub (opens new window)
  • java

  • python

  • Spring

  • SpringMVC

  • SpringSecurity

  • Mybatis

  • 设计模式

  • Go

    • 基础语法

    • Gin框架

    • Go gRPC

    • go-gin-api [文档]

      • 使用 go modules 初始化项目
        • 概述
        • 初始化
        • 添加依赖包
        • go mod 命令
        • 小结
        • 源码地址
      • 规划项目目录和参数验证
        • 概述
        • 规划目录结构
        • 模型绑定和验证
        • 自定义验证器
        • 制定 API 返回结构
        • 源码地址
        • go-gin-api 系列文章
        • 备注
      • 路由中间件 - 日志记录
        • 概述
        • gin.Logger()
        • 自定义 Logger()
        • 源码地址
        • go-gin-api 系列文章
      • 路由中间件 - 捕获异常
        • 概述
        • 什么是异常?
        • 怎么捕获异常?
        • 封装发邮件方法
        • 自定义邮件模板
        • 封装一个中间件
        • 备注
        • 源码地址
        • go-gin-api 系列文章
      • 路由中间件 - 链路追踪(Jaeger)
        • 概述
        • 如何设计日志记录?
        • 开源工具
        • Jaeger 架构图
        • Jaeger Span
        • Jaeger 部署
        • Jaeger 端口
        • Jaeger 采样率
        • Jaeger 缺点
        • 实战
        • 源码地址
        • go-gin-api 系列文章
      • 路由中间件 - 链路追踪(Jaeger)实战
        • 概述
        • Jaeger 部署
        • 准备测试服务
          • 听(listen)
          • 说(speak)
          • 读(read)
          • 写(write)
          • 唱(sing)
        • 应用示例
          • 实例化 Tracer
          • HTTP 注入
          • HTTP 拦截
          • gRPC 注入
          • gRPC 拦截
        • 运行
          • 启动服务
          • 访问路由
        • 效果
        • API 源码地址
        • Service 源码地址
        • go-gin-api 系列文章
      • 路由中间件 - 签名验证
        • 概览
        • MD5 组合
          • 生成签名
          • 验证签名
          • 中间件 - 代码实现
        • AES 对称加密
          • 生成签名
          • 验证签名
          • 中间件 - 代码实现
        • RSA 非对称加密
          • 创建签名
          • 验证签名
          • 中间件 - 代码实现
        • 如何调用?
        • 性能测试
          • MD5
          • AES
          • RSA
        • PHP 与 Go 加密方法如何互通?
        • 源码地址
        • go-gin-api 系列文章
    • go基本介绍
      • 安装go
      • hello world
      • 变量类型
      • 变量和声明
        • 定义和赋值分开
        • 定义和赋值合并
        • 最简单的写法
        • 最简写法结合函数
        • 多个变量同时赋值
        • 变量总结
      • if
      • 导入包
      • 运行go代码
      • 函数声明
        • 返回值个数
        • 参数接收
        • 两个参数都接收
        • 只接收其中一个参数
    • Go结构体
      • 定义结构体
      • 声明和初始化
        • 结构体字段
        • 结构体初始化
        • 函数参数传递方式
        • 镜像复制
        • 指针
      • 结构体上的函数
      • 构造器
        • new
    • Go相关项目推荐
      • 收录golang的一些好的开源项目
  • 后端
  • Go
  • go-gin-api [文档]
hincky
2022-11-21
目录

路由中间件 - 签名验证

# 概览

首先同步下项目概况:

上篇文章分享了,路由中间件 - Jaeger 链路追踪(实战篇),文章反响真是出乎意料, 「Go中国」 公众号也转发了,有很多朋友加我好友交流,直呼我大神,其实我哪是什么大神,只不过在本地实践了而已,对于 Go 语言的使用,我还是个新人,在这里感谢大家的厚爱!

这篇文章咱们分享:路由中间件 - 签名验证。

为什么使用签名验证?

这个就不用多说了吧,主要是为了保证接口安全和识别调用方身份,基于这两点,咱们一起设计下签名。

调用方需要申请 App Key 和 App Secret,App Key 用来识别调用方身份,App Secret 用来加密生成签名使用。

当然生成的签名还需要满足以下几点:

  • 可变性:每次的签名必须是不一样的。
  • 时效性:每次请求的时效性,过期作废。
  • 唯一性:每次的签名是唯一的。
  • 完整性:能够对传入数据进行验证,防止篡改。

举个例子:

/api?param_1=xxx&param_2=xxx,其中 param_1 和 param_2 是两个参数。

如果增加了签名验证,需要再传递几个参数:

  • ak 表示App Key,用来识别调用方身份。
  • ts 表示时间戳,用来验证接口的时效性。
  • sn 表示签名加密串,用来验证数据的完整性,防止数据篡改。

sn 是通过 App Secret 和 传递的参数 进行加密的。

最终传递的参数如下:

/api?param_1=xxx&param_2=xxx&ak=xxx&ts=xxx&sn=xxx

在这要说一个调试技巧,ts 和 sn 参数每次都手动生成太麻烦了,当传递 debug=1 的时候,会返回 ts 和 sn , 具体看下代码就清楚了。

这篇文章分享三种实现签名的方式,分别是:MD5 组合加密、AES 对称加密、RSA 非对称加密。

废话不多说,进入主题。

# MD5 组合

# 生成签名

首先,封装一个 Go 的 MD5 方法:

func MD5(str string) string {
	s := md5.New()
	s.Write([]byte(str))
	return hex.EncodeToString(s.Sum(nil))
}
1
2
3
4
5

进行加密:

appKey     = "demo"
appSecret  = "xxx"
encryptStr = "param_1=xxx&param_2=xxx&ak="+appKey+"&ts=xxx"

// 自定义验证规则
sn = MD5(appSecret + encryptStr + appSecret)
1
2
3
4
5
6

# 验证签名

通过传递参数,再次生成签名,如果将传递的签名与生成的签名进行对比。

相同,表示签名验证成功。

不同,表示签名验证失败。

# 中间件 - 代码实现

var AppSecret string

// MD5 组合加密
func SetUp() gin.HandlerFunc {

	return func(c *gin.Context) {
		utilGin := util.Gin{Ctx: c}

		sign, err := verifySign(c)

		if sign != nil {
			utilGin.Response(-1, "Debug Sign", sign)
			c.Abort()
			return
		}

		if err != nil {
			utilGin.Response(-1, err.Error(), sign)
			c.Abort()
			return
		}

		c.Next()
	}
}

// 验证签名
func verifySign(c *gin.Context) (map[string]string, error) {
	_ = c.Request.ParseForm()
	req   := c.Request.Form
	debug := strings.Join(c.Request.Form["debug"], "")
	ak    := strings.Join(c.Request.Form["ak"], "")
	sn    := strings.Join(c.Request.Form["sn"], "")
	ts    := strings.Join(c.Request.Form["ts"], "")

	// 验证来源
	value, ok := config.ApiAuthConfig[ak]
	if ok {
		AppSecret = value["md5"]
	} else {
		return nil, errors.New("ak Error")
	}

	if debug == "1" {
		currentUnix := util.GetCurrentUnix()
		req.Set("ts", strconv.FormatInt(currentUnix, 10))
		res := map[string]string{
			"ts": strconv.FormatInt(currentUnix, 10),
			"sn": createSign(req),
		}
		return res, nil
	}

	// 验证过期时间
	timestamp := time.Now().Unix()
	exp, _    := strconv.ParseInt(config.AppSignExpiry, 10, 64)
	tsInt, _  := strconv.ParseInt(ts, 10, 64)
	if tsInt > timestamp || timestamp - tsInt >= exp {
		return nil, errors.New("ts Error")
	}

	// 验证签名
	if sn == "" || sn != createSign(req) {
		return nil, errors.New("sn Error")
	}

	return nil, nil
}

// 创建签名
func createSign(params url.Values) string {
	// 自定义 MD5 组合
	return util.MD5(AppSecret + createEncryptStr(params) + AppSecret)
}

func createEncryptStr(params url.Values) string {
	var key []string
	var str = ""
	for k := range params {
		if k != "sn" && k != "debug" {
			key = append(key, k)
		}
	}
	sort.Strings(key)
	for i := 0; i < len(key); i++ {
		if i == 0 {
			str = fmt.Sprintf("%v=%v", key[i], params.Get(key[i]))
		} else {
			str = str + fmt.Sprintf("&%v=%v", key[i], params.Get(key[i]))
		}
	}
	return str
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93

# AES 对称加密

在使用前,咱们先了解下什么是对称加密?

对称加密就是使用同一个密钥即可以加密也可以解密,这种方法称为对称加密。

常用算法:DES、AES。

其中 AES 是 DES 的升级版,密钥长度更长,选择更多,也更灵活,安全性更高,速度更快,咱们直接上手 AES 加密。

优点

算法公开、计算量小、加密速度快、加密效率高。

缺点

发送方和接收方必须商定好密钥,然后使双方都能保存好密钥,密钥管理成为双方的负担。

应用场景

相对大一点的数据量或关键数据的加密。

# 生成签名

首先,封装 Go 的 AesEncrypt 加密方法 和 AesDecrypt 解密方法。

// 加密 aes_128_cbc
func AesEncrypt (encryptStr string, key []byte, iv string) (string, error) {
	encryptBytes := []byte(encryptStr)
	block, err   := aes.NewCipher(key)
	if err != nil {
		return "", err
	}

	blockSize := block.BlockSize()
	encryptBytes = pkcs5Padding(encryptBytes, blockSize)

	blockMode := cipher.NewCBCEncrypter(block, []byte(iv))
	encrypted := make([]byte, len(encryptBytes))
	blockMode.CryptBlocks(encrypted, encryptBytes)
	return base64.URLEncoding.EncodeToString(encrypted), nil
}

// 解密
func AesDecrypt (decryptStr string, key []byte, iv string) (string, error) {
	decryptBytes, err := base64.URLEncoding.DecodeString(decryptStr)
	if err != nil {
		return "", err
	}

	block, err := aes.NewCipher(key)
	if err != nil {
		return "", err
	}

	blockMode := cipher.NewCBCDecrypter(block, []byte(iv))
	decrypted := make([]byte, len(decryptBytes))

	blockMode.CryptBlocks(decrypted, decryptBytes)
	decrypted = pkcs5UnPadding(decrypted)
	return string(decrypted), nil
}

func pkcs5Padding (cipherText []byte, blockSize int) []byte {
	padding := blockSize - len(cipherText)%blockSize
	padText := bytes.Repeat([]byte{byte(padding)}, padding)
	return append(cipherText, padText...)
}

func pkcs5UnPadding (decrypted []byte) []byte {
	length := len(decrypted)
	unPadding := int(decrypted[length-1])
	return decrypted[:(length - unPadding)]
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

进行加密:

appKey     = "demo"
appSecret  = "xxx"
encryptStr = "param_1=xxx&param_2=xxx&ak="+appKey+"&ts=xxx"

sn = AesEncrypt(encryptStr, appSecret)
1
2
3
4
5

# 验证签名

decryptStr = AesDecrypt(sn, app_secret)
1

将加密前的字符串与解密后的字符串做个对比。

相同,表示签名验证成功。

不同,表示签名验证失败。

# 中间件 - 代码实现

var AppSecret string

// AES 对称加密
func SetUp() gin.HandlerFunc {

	return func(c *gin.Context) {
		utilGin := util.Gin{Ctx: c}

		sign, err := verifySign(c)

		if sign != nil {
			utilGin.Response(-1, "Debug Sign", sign)
			c.Abort()
			return
		}

		if err != nil {
			utilGin.Response(-1, err.Error(), sign)
			c.Abort()
			return
		}

		c.Next()
	}
}

// 验证签名
func verifySign(c *gin.Context) (map[string]string, error) {
	_ = c.Request.ParseForm()
	req   := c.Request.Form
	debug := strings.Join(c.Request.Form["debug"], "")
	ak    := strings.Join(c.Request.Form["ak"], "")
	sn    := strings.Join(c.Request.Form["sn"], "")
	ts    := strings.Join(c.Request.Form["ts"], "")

	// 验证来源
	value, ok := config.ApiAuthConfig[ak]
	if ok {
		AppSecret = value["aes"]
	} else {
		return nil, errors.New("ak Error")
	}

	if debug == "1" {
		currentUnix := util.GetCurrentUnix()
		req.Set("ts", strconv.FormatInt(currentUnix, 10))

		sn, err := createSign(req)
		if err != nil {
			return nil, errors.New("sn Exception")
		}

		res := map[string]string{
			"ts": strconv.FormatInt(currentUnix, 10),
			"sn": sn,
		}
		return res, nil
	}

	// 验证过期时间
	timestamp := time.Now().Unix()
	exp, _    := strconv.ParseInt(config.AppSignExpiry, 10, 64)
	tsInt, _  := strconv.ParseInt(ts, 10, 64)
	if tsInt > timestamp || timestamp - tsInt >= exp {
		return nil, errors.New("ts Error")
	}

	// 验证签名
	if sn == "" {
		return nil, errors.New("sn Error")
	}

	decryptStr, decryptErr := util.AesDecrypt(sn, []byte(AppSecret), AppSecret)
	if decryptErr != nil {
		return nil, errors.New(decryptErr.Error())
	}
	if decryptStr != createEncryptStr(req) {
		return nil, errors.New("sn Error")
	}
	return nil, nil
}

// 创建签名
func createSign(params url.Values) (string, error) {
	return util.AesEncrypt(createEncryptStr(params), []byte(AppSecret), AppSecret)
}

func createEncryptStr(params url.Values) string {
	var key []string
	var str = ""
	for k := range params {
		if k != "sn" && k != "debug" {
			key = append(key, k)
		}
	}
	sort.Strings(key)
	for i := 0; i < len(key); i++ {
		if i == 0 {
			str = fmt.Sprintf("%v=%v", key[i], params.Get(key[i]))
		} else {
			str = str + fmt.Sprintf("&%v=%v", key[i], params.Get(key[i]))
		}
	}
	return str
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105

# RSA 非对称加密

和上面一样,在使用前,咱们先了解下什么是非对称加密?

非对称加密就是需要两个密钥来进行加密和解密,这两个秘钥分别是公钥(public key)和私钥(private key),这种方法称为非对称加密。

常用算法:RSA。

优点

与对称加密相比,安全性更好,加解密需要不同的密钥,公钥和私钥都可进行相互的加解密。

缺点

加密和解密花费时间长、速度慢,只适合对少量数据进行加密。

应用场景

适合于对安全性要求很高的场景,适合加密少量数据,比如支付数据、登录数据等。

# 创建签名

首先,封装 Go 的 RsaPublicEncrypt 公钥加密方法 和 RsaPrivateDecrypt 解密方法。

// 公钥加密
func RsaPublicEncrypt(encryptStr string, path string) (string, error) {
	// 打开文件
	file, err := os.Open(path)
	if err != nil {
		return "", err
	}
	defer file.Close()

	// 读取文件内容
	info, _ := file.Stat()
	buf := make([]byte,info.Size())
	file.Read(buf)

	// pem 解码
	block, _ := pem.Decode(buf)

	// x509 解码
	publicKeyInterface, err := x509.ParsePKIXPublicKey(block.Bytes)
	if err != nil {
		return "", err
	}

	// 类型断言
	publicKey := publicKeyInterface.(*rsa.PublicKey)

	//对明文进行加密
	encryptedStr, err := rsa.EncryptPKCS1v15(rand.Reader, publicKey, []byte(encryptStr))
	if err != nil {
		return "", err
	}

	//返回密文
	return base64.URLEncoding.EncodeToString(encryptedStr), nil
}

// 私钥解密
func RsaPrivateDecrypt(decryptStr string, path string) (string, error) {
	// 打开文件
	file, err := os.Open(path)
	if err != nil {
		return "", err
	}
	defer file.Close()

	// 获取文件内容
	info, _ := file.Stat()
	buf := make([]byte,info.Size())
	file.Read(buf)

	// pem 解码
	block, _ := pem.Decode(buf)

	// X509 解码
	privateKey, err := x509.ParsePKCS1PrivateKey(block.Bytes)
	if err != nil {
		return "", err
	}
	decryptBytes, err := base64.URLEncoding.DecodeString(decryptStr)

	//对密文进行解密
	decrypted, _ := rsa.DecryptPKCS1v15(rand.Reader,privateKey,decryptBytes)

	//返回明文
	return string(decrypted), nil
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

调用方 申请 公钥(public key),然后进行加密:

appKey     = "demo"
appSecret  = "公钥"
encryptStr = "param_1=xxx&param_2=xxx&ak="+appKey+"&ts=xxx"

sn = RsaPublicEncrypt(encryptStr, appSecret)
1
2
3
4
5

# 验证签名

decryptStr = RsaPrivateDecrypt(sn, app_secret)
1

将加密前的字符串与解密后的字符串做个对比。

相同,表示签名验证成功。

不同,表示签名验证失败。

# 中间件 - 代码实现

var AppSecret string

// RSA 非对称加密
func SetUp() gin.HandlerFunc {

	return func(c *gin.Context) {
		utilGin := util.Gin{Ctx: c}

		sign, err := verifySign(c)

		if sign != nil {
			utilGin.Response(-1, "Debug Sign", sign)
			c.Abort()
			return
		}

		if err != nil {
			utilGin.Response(-1, err.Error(), sign)
			c.Abort()
			return
		}

		c.Next()
	}
}

// 验证签名
func verifySign(c *gin.Context) (map[string]string, error) {
	_ = c.Request.ParseForm()
	req   := c.Request.Form
	debug := strings.Join(c.Request.Form["debug"], "")
	ak    := strings.Join(c.Request.Form["ak"], "")
	sn    := strings.Join(c.Request.Form["sn"], "")
	ts    := strings.Join(c.Request.Form["ts"], "")

	// 验证来源
	value, ok := config.ApiAuthConfig[ak]
	if ok {
		AppSecret = value["rsa"]
	} else {
		return nil, errors.New("ak Error")
	}

	if debug == "1" {
		currentUnix := util.GetCurrentUnix()
		req.Set("ts", strconv.FormatInt(currentUnix, 10))

		sn, err := createSign(req)
		if err != nil {
			return nil, errors.New("sn Exception")
		}

		res := map[string]string{
			"ts": strconv.FormatInt(currentUnix, 10),
			"sn": sn,
		}
		return res, nil
	}

	// 验证过期时间
	timestamp := time.Now().Unix()
	exp, _    := strconv.ParseInt(config.AppSignExpiry, 10, 64)
	tsInt, _  := strconv.ParseInt(ts, 10, 64)
	if tsInt > timestamp || timestamp - tsInt >= exp {
		return nil, errors.New("ts Error")
	}

	// 验证签名
	if sn == "" {
		return nil, errors.New("sn Error")
	}

	decryptStr, decryptErr := util.RsaPrivateDecrypt(sn, config.AppRsaPrivateFile)
	if decryptErr != nil {
		return nil, errors.New(decryptErr.Error())
	}
	if decryptStr != createEncryptStr(req) {
		return nil, errors.New("sn Error")
	}
	return nil, nil
}

// 创建签名
func createSign(params url.Values) (string, error) {
	return util.RsaPublicEncrypt(createEncryptStr(params), AppSecret)
}

func createEncryptStr(params url.Values) string {
	var key []string
	var str = ""
	for k := range params {
		if k != "sn" && k != "debug" {
			key = append(key, k)
		}
	}
	sort.Strings(key)
	for i := 0; i < len(key); i++ {
		if i == 0 {
			str = fmt.Sprintf("%v=%v", key[i], params.Get(key[i]))
		} else {
			str = str + fmt.Sprintf("&%v=%v", key[i], params.Get(key[i]))
		}
	}
	return str
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105

# 如何调用?

与其他中间件调用方式一样,根据自己的需求自由选择。

比如,使用 MD5 组合:

.Use(sign_md5.SetUp())
1

使用 AES 对称加密:

.Use(sign_aes.SetUp())
1

使用 RSA 非对称加密:

.Use(sign_rsa.SetUp())
1

# 性能测试

既然 RSA 非对称加密,最安全,那么统一都使用它吧。

NO!NO!NO!绝对不行!

为什么我要激动,因为我以前遇到过这个坑呀,都是血泪的教训呀...

咱们挨个测试下性能:

# MD5

func Md5Test(c *gin.Context) {
	startTime  := time.Now()
	appSecret  := "IgkibX71IEf382PT"
	encryptStr := "param_1=xxx&param_2=xxx&ak=xxx&ts=1111111111"
	count      := 1000000
	for i := 0; i < count; i++ {
		// 生成签名
		util.MD5(appSecret + encryptStr + appSecret)

		// 验证签名
		util.MD5(appSecret + encryptStr + appSecret)
	}
	utilGin := util.Gin{Ctx: c}
	utilGin.Response(1, fmt.Sprintf("%v次 - %v", count, time.Since(startTime)), nil)
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

模拟 一百万 次请求,大概执行时长在 1.1s ~ 1.2s 左右。

# AES

func AesTest(c *gin.Context) {
	startTime  := time.Now()
	appSecret  := "IgkibX71IEf382PT"
	encryptStr := "param_1=xxx&param_2=xxx&ak=xxx&ts=1111111111"
	count      := 1000000
	for i := 0; i < count; i++ {
		// 生成签名
		sn, _ := util.AesEncrypt(encryptStr, []byte(appSecret), appSecret)

		// 验证签名
		util.AesDecrypt(sn, []byte(appSecret), appSecret)
	}
	utilGin := util.Gin{Ctx: c}
	utilGin.Response(1, fmt.Sprintf("%v次 - %v", count, time.Since(startTime)), nil)
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

模拟 一百万 次请求,大概执行时长在 1.8s ~ 1.9s 左右。

# RSA

func RsaTest(c *gin.Context) {
	startTime  := time.Now()
	encryptStr := "param_1=xxx&param_2=xxx&ak=xxx&ts=1111111111"
	count      := 500
	for i := 0; i < count; i++ {
		// 生成签名
		sn, _ := util.RsaPublicEncrypt(encryptStr, "rsa/public.pem")

		// 验证签名
		util.RsaPrivateDecrypt(sn, "rsa/private.pem")
	}
	utilGin := util.Gin{Ctx: c}
	utilGin.Response(1, fmt.Sprintf("%v次 - %v", count, time.Since(startTime)), nil)
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14

我不敢模拟 一百万 次请求,还不知道啥时候能搞定呢,咱们模拟 500 次试试。

模拟 500 次请求,大概执行时长在 1s 左右。

上面就是我本地的执行效果,大家可以质疑我的电脑性能差,封装的方法有问题...

你们也可以试试,看看性能差距是不是这么大。

# PHP 与 Go 加密方法如何互通?

我是写 PHP 的,生成签名的方法用 PHP 能实现吗?

肯定能呀!

我用 PHP 也实现了上面的 3 中方法,可能会有一些小调整,总体问题不大,相关 Demo 已上传到 github:

https://github.com/xinliangnote/Encrypt

好了,就到这了。

# 源码地址

https://github.com/xinliangnote/go-gin-api

# go-gin-api 系列文章

  • 1. 使用 go modules 初始化项目 (opens new window)
  • 2. 规划项目目录和参数验证 (opens new window)
  • 3. 路由中间件 - 日志记录 (opens new window)
  • 4. 路由中间件 - 捕获异常 (opens new window)
  • 5. 路由中间件 - Jaeger 链路追踪(理论篇) (opens new window)
  • 6. 路由中间件 - Jaeger 链路追踪(实战篇) (opens new window)
编辑 (opens new window)
路由中间件 - 链路追踪(Jaeger)实战
go基本介绍

← 路由中间件 - 链路追踪(Jaeger)实战 go基本介绍→

最近更新
01
人生前期重要的能力
05-17
02
防火墙命令
04-11
03
docker-compose部署mysql主从集群
03-22
更多文章>
Theme by Vdoing | Copyright © 2022-2023 Hincky | MIT License | 粤ICP备2022120427号
  • 跟随系统
  • 浅色模式
  • 深色模式
  • 阅读模式